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Syfte och mal

Projektet syftar till att framja tekniker for
sensorbaserad overvakning av
bergmassans rorelse och respons i

sprutbetong.

Malet ar att ta fram en sensor och
implementera den i Vastlanken etapp Haga




Vetenskapsfilosofi

Pragmatism (1900-tal — framat)

John Dewey — kunskap ar ett verktyg for handling.

. .. . Pragmatisk ingenjorsvetenskap
Lyfter fram etik, kreativitet och problemlésning i ingenjorsarbete. (2000-tal — idag)

Bent Flyvbjerg — praktisk
klokhet och vardebaserad
teknik.

. e A Integrerar teknik, samhalle och
Logisk positivism (1920-1950-tal) ; 2 etikgi modern ingenjorspraxis.

Rudolf Carnap — endast det som kan

verifieras dr meningsfullt. /)

. . i Post-positivism (1950-1970-tal)

Stérkte kopplingen mellan logik,

matematik och matdata. Karl Popper — vetenskap genom falsifiering och
kritik.

Formade iterativ modellutveckling och hantering av
osédkerhet.

Positivism (1800-tal — tidigt 1900-tal)

Auguste Comte — kunskap ska bygga pa observation och
matning.

Grunden for empirisk ingenjorsmetodik och objektiva lagar.
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Vetenskapsfilosofi

Epokernas syn pa hallfasthet & barighet, matematiska modeller och verifiering

Positivism

Hallfasthet ses som en objektiv, mitbar egenskap hos material och strukturer.
Modeller ar direkta speglingar av verkligheten - matematiska uttryck for naturlagar.
Verifiering sker genom 6verensstimmelse mellan teori och observation; matfel ses som
slumpmadssiga.

Logisk positivism

Barférmaga forstas som relationer mellan observerbara storheter (last, deformation,
spanning).

Modeller ar logiska system av verifierbara samband mellan matdata.

Endast modeller som kan empiriskt bekraftas eller logiskt harledas betraktas som
meningsfulla.

Post-positivism

Hallfasthet ar ett teoriberoende antagande med osékerhet; varden paverkas av modellval.
Modeller ar hypoteser som tolkas och testas - t.ex. FEM och sannolikhetsmodeller.
Verifiering ersatts av falsifiering och modelltestning

Pragmatism

Hallfasthet ses som funktionell tillforlitlighet - en konstruktion ar stark nog om den fungerar i
sitt sammanhang.

Modeller dr verktyg som utvirderas utifran nytta, enkelhet och anvédndbarhet.

Verifiering ar praktisk och erfarenhetsbaserad.

Pragmatisk ingenjorsvetenskap
Barformaga dr adaptiv och kontextuell, formad av material, miljé och mansklig tolkning.
Modeller ar digitala och larande system - t.ex. digitala tvillingar och bayesianska
uppdateringar.
Verifiering blir kontinuerlig kalibrering mot matdata; teori och praktik samspelar dynamiskt.
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Vetenskapsfilosofi s

Pragmatisk ingenjorsvetenskap
+ Sammanfattning

* ULS representerar den klassiska, positivistiska idén om materiell sédkerhet: konstruktionen
far inte kollapsa.

» SLS representerar den pragmatiska idén om funktionell kvalitet: konstruktionen ska
upplevas som fungerande.

* Tillsammans utgér de en dualism mellan fysik och varde, mellan naturvetenskap och

mansklig erfarenhet. . L
Begrepp Teknisk definition Typiska kriterier

+ | den moderna, pragmatiska ingenjorsvetenskapen, ses dessa tva inte langre som fasta B, ’ -
granser — utan som kontinuerligt uppdaterade tillstand i ett levande system, dar sakerhet CSigliEan ey Ne‘.’bk‘g”'g% brati
och funktion samexisterar och balanseras 6ver tid Serviceability Limit konstruktionen inte  sprickbredd, vibrationer,
: State (SLS) langre fungerar deformationer, estetisk
tillfredsstallande i bruk paverkan.

Ultimate Limit State Grénsendar  Bojbrott, plastisk
konstruktionen férlorar kollaps, knéckning,
(ULS) e X
sin barférmaga — brott i fog,
collapse, fracture, Sverbelastning.
instability.
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Vetenskapsfilosofi

Exempel (bro- och byggingenjorsvetenskap)
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Cloud Computing
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Data Acquisition
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Data acquisition — Sensor Technology

accelerometer gyroscope e-compass
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Sensor deployment — Sensor type and installation method

Core 1
Cladding 2
Metal tube 3
Outer sheath 4

Different types of fiber Different deployment methods Different depths
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Data analysis
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Long-term tests — Edge beams

« Geometry and sensor deployment
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DOFS data analysis - Deflections
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DOFS data analysis — Crack detection
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Data Visualization
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DOFS data visualization — crack profiles

(a) - Raw DOFS measurement
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DOFS data visualization — Surface

(a) Superposition of crack functions on the mesh grid

(b) Surface plot of the 2D interpolation
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DOFS data visualization — Crack map

Crack pattern, [mm)]

0 0.03 0.06 0.09 0.12 0.15
| I |

) I l | |

Position along the beam [m]




CHALMERS

UNIVERSITY OF TECHNOLOGY

Evaluation of anchoring zones
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Evaluation of anchoring zones

2.0-=

50— |= '
“,"‘u
L REy

250~
6.0~

(a) Outer quarter (b) Inner quarter

(a) Model rendering (b) Final design without duct
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Evaluation of anchoring zones
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Results
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Augmented information
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Augmented Reality for att tolka tillstandet

< Strains ¥ Cracks |z Deformations
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Augmented Reality for enhanced on-site inspection
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SensIT — Temperature test Glimmingen 2020-12-14 44
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B0 hours

SensIT — Temperature test Glimmingen 2020-12-14 48
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Experiment — D-zon

Separation to allo
space for DOFS

Rollers

2025-10-17




CHALMERS

Fiberplacering
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Sensorbaserad overvakning av rorelse
| bergmassa och sprutbetong med

distribuerad fiberoptik
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Tunnelling In hard rock conditions
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Proposed method

Load identification
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Experimental approach

Load condition factor
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Pre-peak strains
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Mechanical interpretation
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DOFS sensing range

Strains at 30% of peak load (52.6kN) for BS50H 0 Strains at 30% of peak load (49.1kN) for CS50H 20
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Conclusions

* To identify and define performance indicators in shotcrete tunnel linings.

 Crack patterns and curvature distributions are identified as appropriate performance indicators
associated to load type and bond performance

* Models for mechanical interpretations were applied to validate the performance indicators

 To show that advanced sensor-based monitoring systems are adequate tools for obtaining
unique and trustworthy data in shotcrete tunnel linings.

» Distributed optical fibre sensing is appropriate to detect the performance indicators for local loads in
tunnel linings
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Shearing Optical fiber sensors /
rock

"‘ Strain measurements

Grouting CHALMERS
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known properties Section A-A'
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Rock mass
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Implementeringsplan

BASIC
RESEARCH
Basic principles
are observed
and reported

CRITICAL
FUNCTION

APPLIED Proof of concept
RESEARCH established

Technology
concept and/or
application
formulated

LABORATORY
TESTING

of prototype

component or
process

LABORATORY
TESTING
of integrated
system

INTEGRATED
PILOT SYSTEM

PROTOTYPE  pEMONSTRATED
SYSTEM

VERIFIED

MARKET
INTRODUCTION

SYSTEM READY
for full scale
SYSTEM deployment

INCORPORATED
in commercial
design

‘WP 1: Monitoring system
development

‘WP 2: Deployment of sensors

‘WP 3: Post-processing of the
data and analysis

‘WP 4: Visualization of data,
follow up and decision making

Project implementation

T1.1: Sensor configuration
T1.3: Sensor evaluation and prototyping

T2.1: Definition of a deployment plan

T2.2: Installation of sensor in Haga
station

T4.1: Data visualization

T4.2: Sensor data and BIM integration
and follow-up

T4.3: Principles for automated
monitoring of infrastructure

T5.1: Modelling techniques and typical
assumptions

T5.2: Guidelines for the design of tunnel
linings under rock mass
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CYLINDER
DISPLACEMENT
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Gradient of the curvature
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Questions?
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For diskussion

Valkommen till chalmers

Kontakt

Rasmus Rempling

Docent

Studierektor Forskarskolan

Institutionen for arkitektur och samhallsbyggnadsteknik
+46 31 77220 12/ +46 731 53 51 01
rasmus.rempling@chalmers.se
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